Transformations of Ramanujan’s Summation Formula and Its Applications
نویسندگان
چکیده
In this paper, we obtain some new transformation formulas for Ramanujan’s 1ψ1 summation formula and also establish some eta-function identities. We also deduce a q-Gamma function identity, a q-integral and some interesting series representations for π 3/2 2 √ 2Γ2(3/4) and the beta function B(x,y).
منابع مشابه
An Elementary Proof of Ramanujan’s Circular Summation Formula and Its Generalizations
In this paper, we give a completely elementary proof of Ramanujan’s circular summation formula of theta functions and its generalizations given by S. H. Chan and Z. -G. Liu, who used the theory of elliptic functions. In contrast to all other proofs, our proofs are elementary. An application of this summation formula is given.
متن کاملCurious Extensions of Ramanujan’s 1ψ1 Summation Formula
We deduce new q-series identities by applying inverse relations to certain identities for basic hypergeometric series. The identities obtained themselves do not belong to the hierarchy of basic hypergeometric series. We extend two of our identities, by analytic continuation, to bilateral summation formulae which contain Ramanujan’s 1ψ1 summation and a very-well-poised 4ψ6 summation as special c...
متن کاملA NEW An EXTENSION OF RAMANUJAN'S 1 1 SUMMATION WITH APPLICATIONS TO MULTILATERAL An SERIES
Abstract. In this article, we derive some identities for multilateral basic hypergeometric series associated to the root system An. First, we apply Ismail’s [15] argument to an An q-binomial theorem of Milne [25, Th. 5.42] and derive a new An generalization of Ramanujan’s 1ψ1 summation theorem. From this new An 1ψ1 summation and from an An 1ψ1 summation of Gustafson [9] we deduce two lemmas for...
متن کاملFrobenius Partitions and the Combinatorics of Ramanujan's Summation
We examine the combinatorial significance of Ramanujan’s famous summation. In particular, we prove bijectively a partition theoretic identity which implies the summation formula.
متن کاملSemi-Finite Forms of Bilateral Basic Hypergeometric Series
Abstract. We show that several classical bilateral summation and transformation formulas have semi-finite forms. We obtain these semi-finite forms from unilateral summation and transformation formulas. Our method can be applied to derive Ramanujan’s 1ψ1 summation, Bailey’s 2ψ2 transformations, and Bailey’s 6ψ6 summation. Corresponding Author: William Y. C. Chen, Email: [email protected] AMS Cl...
متن کامل